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SUMMARY

Large-eddy simulations (LES) have been performed of a compressed vortex �ow undergoing transition
to turbulence. The numerical method is based on a �nite volume=�nite element discretization of the com-
pressible Navier–Stokes equations on unstructured grids and a Roe second-order scheme with MUSCL
extrapolation. A particular attention is paid to the dissipative character of the method, controlled by a
coe�cient related to the upwind part of the numerical scheme, and its interference with the subgrid
model. The accuracy of the method is �rst checked in the case of decaying homogeneous isotropic tur-
bulence. The investigation is then directed to a plane Taylor vortex �ow submitted to compression, in
a direction perpendicular to the vorticity vector. This �ow is unstable with respect to three-dimensional
perturbations and transition to turbulence is observed if the Reynolds number is large enough. The
numerical method is used to simulate this vortex �ow for two values of the Reynolds number. For the
lower value, the �ow is unstable but remains laminar and no subgrid model is used. For the higher
one, the turbulence appears and the standard and the dynamic Smagorinsky models are tested. The LES
results are compared to those obtained by direct numerical simulations (DNS) using a spectral Fourier
method. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Large-eddy simulation (LES) is a method for turbulent �ow simulation in which the large-
scale motions are predicted by solving the low-pass �ltered Navier–Stokes equations.
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Compared to methods based on the Reynolds-averaged Navier–Stokes (RANS) equations,
which are still mostly employed for engineering applications, LES reduce the dependency on
modelling to the smallest, unresolved scales. Hence, the quest for an universal RANS model
representing the whole range of turbulent scales and encompassing all physical situations is
given up on pro�t of models, called subgrid-scale models, accounting for small scales only
[1–4]. A particular area which may bene�t from LES concerns transitional �ows. In such
�ows, the turbulence, which is not present at the beginning, must be predicted as the result of
the multiple instabilities developing from the laminar state. The RANS assumption of well-
developed turbulence is no longer legitimate in that case and a non-stochastic approach such
as LES can be viewed as a viable alternative.
This paper describes an application of a �nite volume (FV)=�nite element (FE) numeri-

cal method in conjunction with LES models to predict transition in a vortex submitted to
compression. The problem considered in the following is related to an internal combustion
engines con�guration called ‘tumble’, consisting in a large-scale vortical �ow whose axis is
perpendicular to the piston velocity. The tumble is usually generated during the intake phase,
due to a special arrangement of the inlet port. One advantage of the ‘tumble’ is that it breaks
up at some stage of compression producing a high level of turbulence, bene�cial to mixing
and combustion. An experimental study of the tumble has recently been carried out in a sim-
pli�ed con�guration using a square-piston machine [5, 6]. For this particular �ow case, the
performance of di�erent RANS models has been also assessed [7], providing rather mixed
conclusions. A positive achievement of the RANS method concerns the prediction of the mean
tumble velocity during the intake phase, especially when second-order turbulence models are
used. Less positive is the fact that all models tested in Reference [7] fail in predicting the
very prominent maximum observed in the distribution of turbulent kinetic energy around the
centre of the vortex. The large degree of coherence of these velocity �uctuations, which can
be explained by a precession e�ect of the vortex core, is one reason for expecting that LES is
more appropriate to this case. In addition, the poor quality of the RANS predictions in the late
stage of compression was also an incentive for a detailed analysis of the tumble breakdown.
LES have recently been performed [8] of the tumble experiment [6]. The non trivial nature

of the con�guration, including both intake and compression phases as in real engine �ows,
was a motivation for using a numerical method based on unstructured meshes. Connected to
this study, di�erent tests on numerics and subgrid models have been carried out including
comparisons to direct numerical simulations (DNS) of simpler �ows. The purpose of this
paper is to report some of these tests, and more specially those related to the Taylor vortex
submitted to a compression, which is a simpli�ed situation illustrating some important aspect
of the tumble dynamics.
In the context of the numerical �ow simulation, using unstructured meshes is often consid-

ered as an advantageous means of dealing with complex geometrical features such as those
imposed by the �ow boundaries or by the necessity of local grid re�nements. However,
numerical schemes on unstructured meshes are often limited to second order even if those
schemes may have higher accuracy on regular grids. LES using second-order accurate schemes
with regular and non-regular grids have been successfully applied to a large number of �ows
[9–12]. Fewer references exist on the application of LES to internal engine �ows [8, 13, 14].
The present numerical method is based on a mixed FV=FE discretization of the compressible

Navier–Stokes equations. The numerics uses a second-order accurate MUSCL upwind scheme
whose spatial dissipation is controlled by a parameter �. A critical point in the application
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of this method to LES is the control of the numerical dissipation. A minimal amount of
numerical dissipation is needed to stabilize the numerical scheme but it is also desirable that
the dynamics of the resolved scales remain only marginally a�ected by this artefact. One
purpose of this paper is to analyse the interaction of this numerical dissipation with that
introduced by the subgrid scale model.
As a preliminary test, LES results are presented in a case of decaying homogeneous isotropic

turbulence. Di�erent subgrid models are compared and the in�uence of the upwinding param-
eter is studied. The second test case concerns the compressed Taylor vortex. Two di�erent
values of the Reynolds number are considered. The lower Reynolds case is simulated with-
out subgrid model. At the higher value, turbulence transition occurs and the simulation is
performed with the use of a subgrid model. For both values, the results are compared to
DNS data, obtained by a spectral code. The in�uence of the upwinding parameter � and its
interaction with the e�ect of the subgrid-scale model are also discussed.
The paper is organized into three parts. Section 2 provides a brief description of the sub-

grid models. Section 3 concerns the numerical method and the adaptation of LES models
to unstructured grids. The results are presented in Section 4, �rst for homogeneous isotropic
turbulence and �nally for the compression of the Taylor vortex.

2. GOVERNING EQUATIONS

2.1. Filtered equations

The equations used by LES are intended to represent the larger-scale motion of the �ow.
Distinction between large scales and the whole �eld is made by applying a low-pass �lter on
the physical variables and the associated conservation laws. When the �lter is homogeneous
and thus commutes with di�erential operators, a relatively simple set of equations can be
obtained. Regarding compressible �ows, as those considered thereafter, the �ltered equations
can be expressed as in Reference [15]:

@ ��
@t
+

@ ��ũj

@xj
=0 (1)

@ ��ũi

@t
+

@ ��ũiũj

@xj
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− @ ��ij
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@xi
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@ ���ij
@xj

+ RE (3)

The �ltered quantities are marked with overlines and the Favre-�ltered ones (density weighted)
with tildes (e.g. ũ=�u=�). This set of equations is complemented by the equation of state.
For perfect gases:

�p= r ��T̃ (4)

The left-hand sides of Equations (1)–(3) are directly computable either from ‘resolved’ quan-
tities like velocity ũi, temperature T̃ , density ��, pressure �p, or from the ‘computable’ quantities
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�E, ��ij and �qi used in place of the �ltered expressions for total energy, viscous stress and heat
�ux:
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+
1
2
ũiũi (5)
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@xj
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�ij
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�qi= − �(T̃ )
@T̃
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(7)

The subgrid terms have been placed in the right-hand sides of Equations (1)–(3), represent-
ing expressions that are not directly computable from the resolved quantities and requiring
a speci�c closure. Among all these terms, the most important are the terms involving the
subgrid stress tensor:

�ij= ũiuj − ũiũj (8)

The remaining terms Rm and RE are neglected in the following as it is usual to do for the
low Mach number and nearly isothermal �ows considered in this study.

2.2. Smagorinsky model

The Smagorinsky model [16] relates the deviatoric part of the subgrid tensor to the �ltered
velocity gradient by a linear eddy-viscosity model:

�ij − 1
3�kk�ij=−2C2s �2|Sd|Sdij (9)

Sdij=
1
2
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@ũi

@xj
+
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)
− 1
3
�ij

@ũk

@xk
(10)

where � denotes the �lter width and |S| the characteristic �ltered rate of strain:

|S|=(2Sdpq Sdpq)
1=2 (11)

For low Mach number �ows considered thereafter, �kk is negligible as compared to the ther-
modynamic pressure and thus ignored [17]. In the following, the classical value Cs = 0:17 is
used. This choice, originated with the analysis of Lilly and presented of the book of Pope
[2], is usually considered as satisfactory for isotropic turbulence near spectral equilibrium.

2.3. Dynamic Smagorinsky model

The major criticism against the Smagorinky model is that the value Cs is not universal.
In particular, it has been clearly attested that the value Cs = 0:17 must be attenuated near
solid walls and in transitional �ows. To compensate for these variations, a modi�cation of
the Smagorinsky model has been proposed by Germano et al. [18]. The constant C2s in
Equation (9) is replaced by a coe�cient Cd depending on the local structure of the �ow.
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In order to compute Cd, a �lter test is introduced whose width �̂ is larger than �. Appli-
cation of this �lter to a variable x is denoted by x̂. The coe�cient Cd is calculated with a
least squares approach according to:

Cd =
MijLij

MijMij
(12)

Lij= ûiuj − ûiûj (13)

Mij= − 2�̂2|Ŝd|Ŝdij + 2�2 [|Sd|Sdij (14)

In the dynamic model, the occurrence of negative values of Cd is a factor of numerical
instability. For �ows having directions of statistical homogeneity, this problem is usually reme-
died by taking the averaged values of the numerator and the denominator in Equation (12).
No such possibility exists in the Taylor vortex problem and a local smoothing is applied to
avoid unphysical oscillations of Cd. This coe�cient will also be set to zero when the sum of
the subgrid and the molecular dissipation is negative.

3. NUMERICAL METHOD

3.1. Basic numerical method

The �ltered equations are written in the symbolic form:

@Wi

@t
+ div(F(W ))=div(R(W )) + S(W ) (15)

where W =[�; �u1; �u2; �u3; �E] represents the vector of the conservative variables, F(W ) the
convective �uxes of W , R(W ) the di�usive �uxes and S(W ) the source terms. The numerical
method is based on a mixed FV=FE discretization [19].
For the hyperbolic part of the equations a FV approximation is used together with a Riemann

solver. Di�usive and source terms are discretized using a Galerkin method with a P1 FE
interpolation. The method is implemented using 3D unstructured meshes in a numerical code
(‘NadiaLES’) dedicated to LES in complex geometry [20]. Several examples (temporal mixing
layers, �ow around a square cylinder, combustion chamber) are described in Reference [20].
The numerical method uses unstructured tetrahedrizations of the computational domain 	

and is a vertex-centred scheme (i.e. all degrees of freedom are located at vertices). A dual
FV mesh is built by the rule of medians (see Figure 1 for a 2D grid). A cell Ci is constructed
around each vertex (i) by joining the centres of two neighbouring tetrahedrons with the middle
of their common side. On this grid, the weak formulation of Equation (15) reads:∫

	

(
@Wi

@t
+ div(F(W ))

)
 i dv=−

∫
	
div(R(W ))Ni dv+

∫
	
S(W )Ni dv (16)

where the test functions are the FE basis functions Ni for the di�usion and source terms and
the characteristic functions  i of the cell Ci for the Euler terms (convection and pressure
terms).
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iFinite element mesh
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Figure 1. 2D �nite element mesh and �nite volume cell.

After integration by part, this mixed variational formulation becomes:∫
Ci

@Wi

@t
dv+

∫
@Ci

F(W ) ds= −
∫
	
R(W ):∇(Ni) dv+

∫
	
S(W )Ni dv (17)

The discretization of the convective �uxes F(W ) on the cell boundaries is obtained by
a Roe �ux di�erence splitting technique [21], which is an upwind-biased scheme along the
characteristic lines. Convective �uxes through the boundary @Ci are the sum of the �uxes
through the common boundary between two adjacent cells:∫

@Ci

F(W ):n d
=
∑

j∈K(i)

∫
Cij

F(W ):n d
 (18)

where K(i) is the set of neighbouring nodes for the vertex i. The �ux between two adjoining
cells Ci and Cj, denoted �ij, can be written as a sum of a centred approximation and an
additional dissipation term (the upwind term), whose e�ect is of stabilizing the centred scheme:

�ij=�(Wi;Wj; nij)=
(
F(Wi; nij) + F(Wj; nij)

2

)
− 1
2
d(Wi;Wj; nij) (19)

In this expression, nij denotes the normal at the cell boundary and Wi and Wj the quantities W
evaluated at the centre of the cells.
For the Roe scheme the �uxes are evaluated as

�ij=�(Wi;Wj; nij)=
(
F(Wi; nij) + F(Wj; nij)

2

)
︸ ︷︷ ︸

centred part

−1
2

|A(W̃ ; nij)|(Wj − Wi)︸ ︷︷ ︸
upwind part

(20)

in which A= @F=@W is the Jacobian matrix of the �uxes F(W ) and W̃ the Roe’s average of
Wi and Wj.
The spatial accuracy of this scheme is only of �rst order and a second-order scheme is

obtained with the MUSCL linear reconstruction method introduced by Van Leer [22]. The
idea consists in replacing Wi and Wj by the interpolated values Wij and Wji on the interface
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between the two cells centred at the nodes i and j.

Wij=Wi + 1
2(∇W )Di :ij (21)

Wji=Wj − 1
2 (∇W )Dj :ij (22)

(∇W )Di is an approximate gradient of W at each vertex, derived from the Galerkin linear
interpolation of W over all the neighbouring triangles (see Reference [11])

(∇W )i=
1

measCi

∑
T;i∈T

∫
Ci∩T

∇Wh dw (23)

The time integration is performed using an explicit fourth-order Runge–Kutta method. An
e�cient parallel implementation has been done using a domain decomposition method and
the message-passing libraries.

3.2. Adaptation of the numerical method to LES

The main criticism against using upwind second-order schemes for LES is their excessive
numerical dissipation, which can override the dissipation due to the subgrid-scale model. To
control certain properties of the discretization, the standard formulation has been modi�ed by
introducing two adjustable parameters, � and 	.
The parameter 0:5, in front of the upwind part of the Roe �uxes in Equation (20), is

replaced by a coe�cient � giving the possibility to adjust the numerical viscosity to the
smallest value, compatible with the stability of the numerical scheme [23]:

�ij=
F(Wij) + F(Wji)

2
− �|A(W̃ ; nij)|(Wji − Wij) (24)

A minimal amount of numerical spatial dissipation is mandatory since this dissipation directly
competes with the e�ect of the second derivatives of the subgrid-scale model. But a too low
amount of dissipation induces non-physical oscillations in the solution, which then becomes
numerically unstable (the case �=0 is unconditionally unstable). The parameter � is then
chosen, in each test case, as the smallest value for which non-physical oscillations are avoided.
The second parameter 	 controls the dispersion rate of the interpolation. The interpolation

of Wi and Wj on the interface is evaluated through a balance between a centred gradient
(∇W )C and an approximate gradient on the vertex (∇W )D.

Wij=Wi + 0:5[(1− 2	)(∇W )C + 2	(∇W )Di ]:ij (25)

Wji=Wj − 0:5[(1− 2	)(∇W )C + 2	(∇W )Dj ]:ij (26)

The term (∇W )C:ij is de�ned as

(∇W )C:ij=Wj − Wi (27)

For 	= 1
3 , the interpolation is third-order accurate for the 1D advection problem on regular

mesh problem [11].
The Roe solver is known to su�er from accuracy problems in the low Mach number limit

[24]. To extend the numerical method to low velocity �ows, a preconditioning technique is
commonly used. In this study, the preconditioning method of Guillard is employed [24–26].
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Figure 2. L2 norm of the di�erence between exact velocity uex and approximate
solution uh as function of the mesh size h.

The Roe matrix |A(W̃ ; nij)| in the upwind part of the �uxes is replaced by P−1
c |PcA(W̃ ; nij)|

where Pc is a preconditioning matrix, which can be written in primitive variables as
Pp=Diag(
2; 1; 1; 1; 1) in which 
 is a parameter of the order of the Mach number of the
�ow.
The overall accuracy of the numerical method is demonstrated by comparing the results

obtained on 2D regular and non regular grids to the analytical solution of the Taylor vortex
�ow. The computational domain is a square and shear-free conditions are applied to the
boundary. The �ow is �rst calculated on di�erent regular grids and the L2 norm of the error
is evaluated as function of the mesh size h. In order to ascertain the sensitivity to the non-
regular character of the unstructured meshing, the simulation is also performed after applying
large random displacements to the nodes of the di�erent regular grids. The grid modi�cation is
such that the probability law of a node displacement from its initial position is uniform within
a radius equal to 75% of the original mean mesh size. The results are plotted in Figure 2 and
show a second-order accuracy for both sets of grids.
The Taylor vortex considered in this paper is a case of �ow evolving inside a parallepipedic

domain whose edge length in the x1 direction is a decreasing function of time a(t). To take into
account the domain deformation, a simple moving mesh formulation is employed. The domain
is turned into a �xed one by the coordinate transformation X1 = x1 a(0)=a(t); X2 = x2; X3 = x3,
where a(0) is the side-length at initial time. The equations are solved in the new system of
coordinates on a unique mesh, corresponding to the geometry at initial time.

3.3. Adaptation of the �ltering to non-structured grids

As usual, it is considered that the ‘resolved’ scales are �ltered by the e�ect of the numerical
discretization. No explicit �lter is used, except for the test �lter of the dynamic Smagorinsky
model. For non-regular grids, the �lter parameter � depends locally on the mesh size. At
vertex (i), � is de�ned as the characteristic size of the corresponding cell Ci:

�=meas(Ci)1=3 (28)
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The size of the test �lter attached to the vertex (i), is the size of the super-cell resulting
from the union K(i) of all the neighbouring cells Cj:

�̂=

(∑
K(i)
meas(Cj)

)1=3
(29)

One problem in estimating Cd locally from Equation (12) is that the obtained values
have frequently strong variations in space with potentially negative impact on the stability
of the LES calculations. When feasible, the constant Cd is averaged in directions of statistical
homogeneity. In the present case, no such possibility exists and the nodal value Cd is simply
taken as the volume average of the dynamic constant on all the neighbouring nodes.

4. LES RESULTS

4.1. Decay of homogeneous isotropic turbulence

The numerical method is �rst applied to the LES of homogeneous isotropic turbulence. Widely
documented by experimental data or DNS, this con�guration is a standard test for the LES
methods. In the absence of mean velocity gradient or external forces, the kinetic energy of the
�ow decays due to e�ect of viscosity. A too strongly dissipative method is usually diagnosticed
by an increase of the energy decay rate and a loss of resolution in the small-scale range. Here,
the in�uence of the subgrid model and the role of the mesh and of the upwinding parameter �
on the numerical dissipation are investigated.
For the present LES, the reference data are from the grid-generated turbulent �ow of Comte-

Bellot and Corrsin [27]. In a frame moving with the mean velocity, this �ow is viewed as a
freely decaying, homogeneous, isotropic turbulence and simulated in a cubic box with periodic
boundary conditions in the three directions. Energy spectra have been measured at three
downstream locations from the grid corresponding to the dimensionless times: U0t=M =42,
98, 171, in terms of grid mesh size unit M =5:08 cm and mean velocity at the grid section
U0 = 10m=s.
The simulations are performed with a 323 nodes grid in a numerical box whose sides

are 32 cm long. The initial divergence-free velocity �eld is generated in Fourier space in a
conventional manner. Its energy spectrum matches the experimental data at U0t=M =42.
The results corresponding to the two subgrid-scale models are �rst compared for the value

�=0:025. Note that for this low value of �, numerical instabilities are obtained if the subgrid-
scale model is removed from the equations. Direct simulation is possible however when the
value of the parameter is raised to �=0:1. Time evolutions of kinetic energy are shown
in Figure 3 while the energy spectra E(K) are plotted in Figure 4 for the initial state at
U0t=M =42 and for 98. Obviously, the contribution of the subgrid scales is not included in
the LES results. If the e�ect of the discretization is approximated by the e�ect of a top-hat
�lter at the mesh spacing, this contribution is estimated at about 10% of the total kinetic
energy. The corrected experimental data are also plotted in Figure 3. The �gures also show
that the dynamic Smagorinsky model is slightly less di�usive than the standard Smagorinsky
model but the di�erence between the models is very weak. The results of the coarse DNS
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Figure 3. Decay of turbulence kinetic energy. In�uence of the subgrid model.
Comparison to Comte-Bellot and Corrsin experiment [27].
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Figure 4. Energy spectrum at initial time and at the non-dimensional time U0t=M =98. In�uence
of the subgrid model. Comparison to Comte-Bellot and Corrsin experiment [27].

(no subgrid model) have also be plotted in Figure 4. Very likely, the slightly more di�usive
character of the coarse DNS can be explained by the larger value of �.
Considering now the e�ect of the upwinding parameter �, Figures 5 and 6 present the

kinetic energy and the spectra for the three values �=0:025, 0.05 and 0.1. All curves are
relative to the dynamic Smagorinsky model. It is clearly apparent that too much upwinding
increases the energy decay rate. The di�usive character of high values of � is also attested
in Figure 6 for the high wavenumber range. It follows that the parameter � must then be
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Figure 5. Decay of turbulence kinetic energy. In�uence of the numerical viscosity parameter �.
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Figure 6. Energy spectrum at initial time and at U0t=M =98. In�uence of
the numerical viscosity parameter �.

reduced as far as possible in order to obtain reliable results. A minimal value of � is however
mandatory to prevent numerical instabilities and the value 0.025 appears in this case not to
be far from the optimum.
Additional tests have been performed to analyse the in�uence of the grid regularity. A

simulation is performed on a non-uniform 323 nodes grid whose the mesh aspect ratio varies
from 1 (at the centre) to 3 (near the domain limits). Another non-regular 323 grid has been
considered, obtained from a random perturbation of the nodes of a uniform square mesh,
as described in Section 3.3. Results for the spectra are compared in Figure 7. The random
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Figure 7. Energy spectrum at initial time and at U0t=M =98. In�uence of the grid regularity.
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perturbations of the nodes do not change the results compared to the regular mesh. For the
non-regular mesh, the results are only slightly modi�ed in the large scales. A simulation has
also been performed on a re�ned mesh (643). The only visible e�ect is a better resolution in
the small scales (Figure 8).
As expected, the numerical di�usivity and the rate of kinetic energy drained by the subgrid

model increase with the upwinding parameter. The e�ects of the subgrid-scale viscosity and
numerical viscosity are however far from being additive. To illustrate how they are interlinked
which each other, the quantities Cd and �t=� for the dynamic model have been plotted for the
three values of �. The time evolutions presented in Figures 9 and 10 are obtained by averaging
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over the whole domain. The subgrid-scale viscosity obtained by the standard Smagorinsky
model is also plotted for �=0:025.
After a short transition period, Cd saturates to a nearly constant value that appears to be

a decreasing function of �. The di�erent values of Cd remain smaller than the Smagorin-
sky model coe�cient C2s = 0:0289. The subgrid viscosity has typical decreasing variations
due to the decay of turbulent energy and, for the considered time lap, �t is three to �ve
times larger than the molecular viscosity. As noted before, for equal values of �=0:025, the
dynamic model is slightly less di�usive than the standard model. Like the coe�cient Cd, �t=�
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decreases when � increases. To a certain extent, this variation results from the linear relation
between the two parameters. But, while the relative variations of Cd lie between 10 and 20%,
those of �t=� go up to 40–50%. The fact that Cd is lower when the numerical method is
more di�usive can be explained by the decrease of residual stress, relative to the test �lter.
The larger decrease of �t=� results from the reduction of the �ltered strain rate when larger
values of � are used.

4.2. Compression of the Taylor vortex

The investigation is now turned to the case of the Taylor vortex �ow submitted to a compres-
sion in a direction perpendicular to the vorticity vector. This �ow is of particular relevance
in the context of internal combustion engines. One particular reason is the existence of an
analytical solution for the 2D Taylor vortex problem to which numerical simulations can
be directly compared. A property of the Taylor vortex that makes it viewed as a possible
model for the tumble breakdown, is the possibility for 3D instabilities to develop, when the
vortex is submitted to deformation. When the Reynolds number is high enough, a turbulent
�ow emerge from these instabilities, making this �ow also relevant for subgrid-scale models
assessment. In the last instance, due to its particular boundary conditions, the Taylor vortex
can be simulated using Fourier-type spectral expansions. These methods have fast convergence
properties and are easy to implement. DNS in the turbulent regime can thus be carried out at
reasonable computational cost in order to provide reference data for the LES predictions. The
characteristics of the Taylor vortex test cases are now exposed, followed by a short account
of the spectral method used to obtain the reference data. The numerical results of the FE–FV
method are then presented, including DNS and LES cases and comparisons to data from the
spectral method.

4.2.1. Description of the test case. Consider the time-varying, parallelepipedic domain:
0¡x1¡a(t), 0¡x2¡a0, 0¡x3¡a0, submitted to a deformation in the x1 direction. At time
t=0, the domain is supposed to be cubic: a(0)= a0 and the �uid �ow inside is de�ned by
the velocity u=∇ ×  x3 and the streamfunction

 =
a20	0
2�2

sin
�x1
a0
sin

�x2
a0

(30)

This expression corresponds to the well-known Taylor–Green vortex solution. In in�nite space,
the velocity �eld consists in a periodic arrangement of counter-rotating vortices decaying with
the exponential factor exp(−2��2a−2

0 t). The restriction to the cubic domain de�nes one unique
vortex tangent to the cube and referred to hereafter as the ‘Taylor vortex’. By virtue of the
�ow symmetries, this vortex considered from its own part can be viewed as a solution in the
cube with ‘shear-free’ boundary conditions, consisting in zero mass �ux and zero tangential
shear conditions.
In the same way, a two-dimensional analytical solution can be obtained for the above-

considered time-varying domain and the same type of boundary conditions. The solution of
Le Roy and Le Penven [7] represents the Taylor vortex submitted to compression (or di-
latation) in the direction x1 perpendicular to the initial vorticity. This solution, the so-called
‘compressed Taylor vortex’, is obtained assuming that: (i) the �ow Mach number is very
small, (ii) the boundaries are thermally isolated, (iii) the density has uniform values at
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initial time. Under these assumptions, the density remains spatially homogeneous and varies
in time as the compression ratio r(t)= a(t)=a(0).
For a time-independent domain having unequal sidelengths in x1 and x2 directions, a solu-

tion also exists generalizing Equation (30). While the Taylor vortex is linearly stable when
the sidelengths in the two directions are equal, instability is proved in the general case if
the Reynolds number is large enough [28, 29]. In the same spirit, it has been shown that the
compressed Taylor vortex can produce a very complex, three-dimensional �ow under the
e�ect of a small initial perturbation [7]. The following case is such an example of initially
perturbed Taylor vortex undergoing compression.
The perturbation introduced at t=0 consists in a secondary Taylor vortex perpendicular to

the �rst one and rotating in the x1; x3 plane. The perturbation velocity reads ∇ ×  ′x2, where

 ′= 
a20 	0
2�2

sin
�x1
a0
sin

�x3
a0

(31)

The perturbation amplitude is �xed to 1% of the velocity of the main vortex (=0:01).
Introducing the Reynolds number Re=	0a20=� based on 	0, the maximum value of the initial
vorticity, three di�erent values are considered: Re=1600, 6250, 78 300. For each case, the
kinematic viscosity � is maintained constant. The boundary conditions are of shear-free type.
The variable side-length a(t) is speci�ed by the decreasing function:

a(t)= a0 +
V0
!
[1− cos(!t)] (32)

for time t varying from 0 to �=!. The compression depends on two parameters, the maximum
value of the volumetric ratio: r(�=!)=5 and the ratio of the time scales corresponding to
the vortex and to the compression which is equal to 	0=!=20:4. These values have been
chosen in reference to the tumble experiment described in Reference [5]. For the �rst two
values of Re, the �ow remains laminar and is simulated directly, without turbulence modelling.
For the higher Reynolds number value, the �ow becomes turbulent during the compression
phase and the subgrid-scale model is activated. All the simulations are performed assuming
that initial density is spatially uniform and the domain boundaries are thermally isolated. The
initial Mach number M is �xed to a small value, in order that the O(M 2) inhomogeneities
of density, temperature and velocity divergence remain negligible.
Reference data are obtained by using a spectral code based on a Fourier pseudo-spectral

method. The compression-induced velocity (whose divergence is uniform in space) is removed
from the �ow velocity and the resulting vector �eld u− ȧ=a x1 x1 is projected on a set of time-
varying, complex exponential functions: exp(i�(h1x1a0=a(t) + h2x2 + h3x3)=a0), where h1, h2,
h3 are integers. This vector �eld is supposed to be divergence free, in accordance with the
hypothesis of low Mach number. The time-evolution of Fourier coe�cients are computed
using the classical Runge–Kutta fourth-order method [30].

4.2.2. Direct simulation of the compressed Taylor vortex at Re=1600; 6250. The �rst two
cases corresponding to Re=1600; 6250 have been simulated without subgrid modelling. A �rst
idea about the e�ect of the perturbation is indicated by the isovorticity surfaces |∇ × u|=C.
Di�erent values of the compression ratio have been chosen and the value of C at each time is
taken as half the maximum value of |∇×u|. At t=0, the isosurface is aligned with the z-axis
and the perturbation is not discernible. For Re=1600 (Figure 11), the perturbation is rapidly
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Figure 11. Isosurfaces of vorticity magnitude. Re=1600, r=1 (left) and r=5 (right).

Figure 12. Isosurfaces of vorticity magnitude. Re=6250, r=1 (left) and r=3 (right).

attenuated by the e�ect of viscosity and the velocity remains very close from Le Roy and
Le Penven’s [7] two-dimensional solution. On the other hand, the perturbation is clearly am-
pli�ed in the case Re=6250 and the vortex exhibits a three-dimensional and quite complex
behaviour (Figures 12 and 13). The concentration of the isovorticity surface and the emer-
gence of vortex sheets perpendicular to the x1 direction in Figure 13 are typically non-linear
e�ects. In the last two pictures, one can observe the vortex core, initially oriented in the posi-
tive x3 direction, tilting back in the opposite direction as a consequence of the image ef-
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Figure 13. Isosurfaces of vorticity magnitude. Re=6250, r=4 (left) and r=5 (right).
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Figure 14. Pro�les of u1(a=2; x2; a0=2) and u2(x1; a0=2; a0=2). Re=6250, r=3.

fect imposed by the boundaries. The simulations have been performed with the FV–FE code
using a 813 nodes mesh. The results are in good agreement with those obtained by the spec-
tral method, as indicated by the velocity pro�les at di�erent stages of compression (Figures
14–16). Note that the compression-induced velocity has been removed from the plotted pro-
�les of u1.

4.2.3. LES of the compressed Taylor vortex at Re=78300. Higher values of the Reynolds
number cause a faster increase of the perturbation and, ultimately, the development of a
turbulent �ow. LES have been performed at Re = 78300, using the FV–FE method with
a 413 nodes mesh, di�erent subgrid-scale models and di�erent values of �. The reference data
for this LES are produced by a DNS (no subgrid model) using the spectral method. This
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simulation requires 96 × 2562 modes for the second half-part of the compression, when the
turbulent transition occurs.
A description of the �ow is now given based on the LES results obtained using the

dynamic Smagorinsky model and the value � = 0:025. From all tested conditions, these
ones have been found to be optimal ones as in the case of isotropic turbulent �ow of
Section 4.1.
Isovorticity surfaces are plotted in Figures 17 and 18 for r equal to 2, 3, 4 and 5. For r = 2

and 3, the selected surface corresponds to half its maximum value throughout the �ow. The
more rapid growth of the instability is apparent when compared to the case Re = 6250. At the
end of compression, the isovorticity surface exhibits strong irregularities due to the presence
of turbulence. For the last two values the isosurfaces correspond to one-quarter of the maximal
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Figure 17. Isosurfaces of vorticity magnitude. Re=78 300, r=2 (left) and r=3 (right).

Figure 18. Isosurfaces of vorticity magnitude. Re=78 300, r=4 (left) and r=5 (right).

value. Transition to turbulence is characterized by an increase of kinetic energy transfer to the
smaller scales and is attested around r = 4 from the observation of a qualititative change in
the spectra of the DNS data. As an illustration, the kinetic energy spectra have been plotted
in Figure 19, for the two values r = 3:02 and 4.62 and as functions of the three components
of wave-vector Ki = �hi=a0. While still rapidly decreasing at r = 3:02, the spectra develop
almost one decade of inertial range with the characteristic −5=3 power law in the last part
of the compression. At r = 4:62, the three spectra merge in the high wavenumber range,
attesting local isotropy in the small scales.
Since the �ow is turbulent at the end of compression and becomes very sensitive to small

perturbations, arising either from the physics or the numerical approximation, comparing
instantaneous pro�les for DNS and LES is no longer signi�cant. The analysis will thus be
concerned by physical quantities obtained after averaging over the whole �ow domain. Using
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the symbol 〈〉 for averages over the �ow domain, the variations of 〈u2i 〉 have been plotted in
Figure 20. The sum of the three components (twice the kinetic energy per unit mass), is also
presented in Figure 21. Continuous lines indicate LES predictions and symbols are used for
the �ltered DNS results.
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Figure 21. Evolution of 〈u21〉 + 〈u22〉 + 〈u23〉 as function of compression ratio r(t).
NadiaLES: �=0:025, dynamic Smagorinsky model.

The compression is responsible for the increase of the �ow kinetic energy. The maximum is
observed near r=4. After that, the role of dissipation, enhanced by turbulent transfers to small
scales, is prevailing and the kinetic energy rapidly decreases. Three phases can be identi�ed.
From r=1 to 2.25, the e�ect of the perturbation is not signi�cant and the �ow remains two-
dimensional. The respective decrease and increase of u1 and u2 are the consequences of the
vortex �attening. From r=2:25 to 3.75, the instability is characterized by an increase of the u3
component. Compared to the 2D non-perturbated analytical solution, the total kinetic energy
appears not to be a�ected by the perturbation during this period of time. The dissipation due
to instability and turbulent generation becomes increasingly dominant in the late compression.
As seen in Figures 20 and 21, the LES predictions are in a satisfactory agreement with the

direct spectral simulation. The total kinetic energy is however slightly overestimated at the
end of the compression due to an excess of the u3 contribution.
To make the role of � explicit, the time variations of 〈ukuk〉 obtained using the di�er-

ent values �= 0.025, 0.05, 0.1 are plotted in Figure 22. The same dynamic Smagorin-
sky model is used for the three simulations. In the initial phase till r=3:5, the results are
clearly not in�uenced by �. Then, the e�ect of a too large value of � is to reduce the level
of kinetic energy. The numerical dissipation terms [11] are formed by fourth-order space
derivatives which have a larger damping e�ects on high frequencies, explaining why the
numerical viscosity acts more at the end of the compression when small structures are domi-
nant. The best results are here obtained for �=0:025.
Keeping the value �=0:025, the results from the standard and dynamic Smagorinsky models

are compared in Figure 23. Simulations were also attempted without using a subgrid model,
leading to an observed loss of numerical stability for values of � lower than 0.05. Compared
to the dynamic model, the standard Smagorinsky model is clearly too di�usive especially in
the laminar period from r=3:5 and in the turbulent phase till r=4:5. At the end of the
compression, both models give comparable energy levels.
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Figure 23. Evolution of 〈u21〉 + 〈u22〉 + 〈u23〉 as function of compression ratio r(t).
NadiaLES: �=0:025, standard and dynamic Smagorinsky model.

The evolution of the subgrid viscosity, non-dimensionalized by the laminar viscosity, is
presented in Figure 24. For both models, the subgrid viscosity �t grows until r=4 because
of the increase of mean strain magnitude |S| and then slightly decreases between r=4 and 5.
The variations with � are such that �t decreases with a larger amount of numerical viscosity.
It must also be noted that the standard Smagorinsky model predicts larger values of �t during
the �rst part of the compression. Overprediction is due to the fact the value of the constant
Cs is clearly not appropriate to this phase of the �ow evolution which is essentially laminar.
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The main advantage of the dynamic model is in allowing the constant to self-adapt to the
�ow conditions. As can be seen in Figure 24, the dynamically adapted coe�cient remains
moderate during the laminar phase and the values �t remains substantially lower.

5. CONCLUSION

This paper investigates the ability of LES and second-order numerical method on unstructured
meshes to simulate a Taylor vortex submitted to a compression. The studied test case is a
simpli�ed model of the tumble �ow encountered inside internal combustion chambers. The nu-
merical solver uses a mixed FV=FE approximation on unstructured meshes with second-order
accuracy. Combined with LES subgrid-scale models, satisfactory results have been obtained in
two test cases: decaying homogeneous isotropic turbulence and the compressed Taylor vortex.
These results are encouraging in the perspective of application to more complex problems:
one example is the tumbling �ow inside a compression chamber [8].
One drawback of second-order upwind schemes, such as the one used in this paper, is its

possible excessive numerical dissipation. For the present method, the numerical dissipation is
controlled by a parameter � that must be as low as possible to avoid too large dissipation
at the small scales, while keeping high enough values to avoid numerical instabilities. For
the studied test cases, the value �=0:025 seems to be close to the optimum. It should be
noted however that, for the present turbulent simulations, the predicted kinetic energy levels
are not critically dependent on the precise value of �. The reason is that the subgrid-scale
model dissipation is shown to adapt itself to the level of numerical dissipation. Increasing �
by a factor of 4 makes the subgrid-scale viscosity �t decrease by a factor 1.7 (Figure 9), but
a�ects the kinetic energy levels only by a decrease of less than 10% (Figure 5). Compared
to the standard Smagorinsky subgrid model, the dynamic formulation improves this observed
compensation for the two test cases. To make the results less dependent on the value of �,
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a higher order MUSCL interpolation could be used, as the one developed by Camarri et al.
[31], this method leads however to a doubling of the computational cost.
Finally, it is also demonstrated that the dynamic Smagorinsky model is superior to the

standard one in predicting the laminar-turbulent transition occuring in the Taylor vortex.

ACKNOWLEDGEMENTS

This work was developed as a part of ARC ‘Moteurs propres et �economes’ supported by the CNRS,
PSA and Renault. Computer time was provided by the Centre Informatique National de l’Enseignement
Sup�erieur at Montpellier. The authors would like to thank Anne Cadiou, research engineer at the LMFA,
for her great help in developing the numerical tests.

REFERENCES

1. Lesieur M, M�etais O. New trends in large-eddy simulations of turbulence. Annual Review of Fluid Mechanics
1996; 28:45–82.

2. Pope B. Turbulent Flows. Cambridge University Press: Cambridge, 2000.
3. M�eneveau C, Katz J. Scale-invariance and turbulence models for large-eddy simulations. Annual Review of
Fluid Mechanics 2000; 32:1.

4. Sagaut P. Large Eddy Simulations or Incompressible Flows (2nd edn). Springer: Berlin, 2002.
5. Marc D, Bor�ee J, Bazile R, Charnay G. Combined PIV and LDV analysis of the evolution and breakdown of
a compressed tumbling vortex. 11th Symposium on Turbulent Shear Flows, Grenoble, 1997.

6. Bor�ee J, Maurel S, Bazile R. Disruption of a compressed vortex. Physics of Fluids 2002; 14(7).
7. Le Roy O, Le Penven L. Compression of a turbulent vortex �ow. International Journal of Heat and Fluid
Flow 1998; 19:533–540.

8. Toledo M, Le Penven L, Bu�at M, Cadiou A. LES of a compressed turbulent vortex �ow. 10th European
Turbulence Conference, 29 June–02 July 2004, Trondheim, Norway, 2004.

9. Jansen KE. Large-eddy simulations of �ow around a NACA 4412 aerofoil using unstructured grids. CTR
Annual Research Briefs, 1996.

10. Bui T. A parallel �nite-volume algorithm for large-eddy simulation of turbulent �ows. Computers and Fluids
2000; 29:877–915.

11. Camarri S, Salvetti MV, Koobus B, Dervieux A. Large-eddy simulation of a blu�-body �ow on unstructured
grids. International Journal for Numerical Methods in Fluids 2002; 40:1431–1460.

12. Mahesh K, Contantinescu G, Moin P. A numerical method for large-eddy simulation in complex geometries.
Journal of Computational Physics 2004; 197:215–240.

13. Haworth DC, Jansen KE. Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC
engines. Computers and Fluids 2000; 29:493–524.

14. Moureau V, Barton I, Angelberger Ch, Poinsot T. Towards large-eddy simulation in internal-combustion engines:
simulation of a compressed tumble �ow. SAE Paper 2004-01-1995, 2004.

15. Vreman AW. Direct and large-eddy simulation of the compressible turbulent mixing layer. Ph.D. Thesis,
University of Twente Enschede, 1995.

16. Smagorinsky J. General circulation experiments with the primitive equations. Monthly Weather Review 1963;
91:99–164.

17. Erlebacher G, Hussaini MY, Speziale CG, Zang TA. Toward the large-eddy simulation of compressible �ows.
Journal of Fluid Mechanics 1992; 238:155–185.

18. Germano M, Piomelli U, Moin P, Cabot WH. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids
A 1991; 3(7):1760–1765.

19. Dervieux A. Steady Euler simulations using unstructured meshes. VKI, Lectures Series 1984–04, 1985.
20. Duchamp L. Simulation des grandes �echelles d’�ecoulements compressibles et r�eactifs sur maillage non-structur�e.

Th�ese de doctorat, Ecole Centrale de Lyon, 1999.
21. Roe PL. A numerical method for solving the equations of compressible viscous �ows. AIAA Journal 1982;

20(9):1275–1281.
22. Van Leer B. Flux vector splitting for the Euler equations. Lecture Notes in Physics 1982; 170:405–512.
23. Carpentier R. Comparison entre des sch�emas 2D de type Roe sur maillage r�egulier triangle ou quadrangle.

INRIA Report 3360, 1998.
24. Guillard H, Viozat C. On the behavior of upwind schemes in the low Mach number limit. Computers and

Fluids 1999; 28:63–86.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:355–379



LES OF THE COMPRESSED TAYLOR VORTEX FLOW 379

25. Turkel E. Review of preconditioning methods for �uid dynamics. Applied Numerical Mathematics 1993;
12:257–284.

26. Viozat C. Implicit upwind scheme for low Mach number compressible �ows. INRIA Report 3084, 1997.
27. Comte-Bellot G, Corrsin S. Simple Eulerian time correlation of full and narrow-band velocity signals in grid-

generated ‘isotropic’ turbulence. Journal of Fluid Mechanics 1971; 48:273–337.
28. Lundgren TS, Mansour NM. Transition to turbulence in an elliptic vortex. Journal of Fluid Mechanics 1996;

307:43–62.
29. Sipp J, Jacquin L. Elliptic instability in two-dimensional �attened Taylor–Green vortices. Physics of Fluids

1998; 10(4):839–849.
30. Le Roy O. Th�ese de doctorat, Ecole Centrale de Lyon, 1998.
31. Camarri S, Salvetti MV, Koobus B, Dervieux A. A low-di�usion MUSCL scheme for LES on unstructured

grids. Computers and Fluids 2004; 33:1101–1129.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:355–379


